Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation.

نویسندگان

  • Haiyuan Zhang
  • Zhaoxia Ji
  • Tian Xia
  • Huan Meng
  • Cecile Low-Kam
  • Rong Liu
  • Suman Pokhrel
  • Sijie Lin
  • Xiang Wang
  • Yu-Pei Liao
  • Meiying Wang
  • Linjiang Li
  • Robert Rallo
  • Robert Damoiseaux
  • Donatello Telesca
  • Lutz Mädler
  • Yoram Cohen
  • Jeffrey I Zink
  • Andre E Nel
چکیده

We demonstrate for 24 metal oxide (MOx) nanoparticles that it is possible to use conduction band energy levels to delineate their toxicological potential at cellular and whole animal levels. Among the materials, the overlap of conduction band energy (E(c)) levels with the cellular redox potential (-4.12 to -4.84 eV) was strongly correlated to the ability of Co(3)O(4), Cr(2)O(3), Ni(2)O(3), Mn(2)O(3), and CoO nanoparticles to induce oxygen radicals, oxidative stress, and inflammation. This outcome is premised on permissible electron transfers from the biological redox couples that maintain the cellular redox equilibrium to the conduction band of the semiconductor particles. Both single-parameter cytotoxic as well as multi-parameter oxidative stress assays in cells showed excellent correlation to the generation of acute neutrophilic inflammation and cytokine responses in the lungs of C57 BL/6 mice. Co(3)O(4), Ni(2)O(3), Mn(2)O(3), and CoO nanoparticles could also oxidize cytochrome c as a representative redox couple involved in redox homeostasis. While CuO and ZnO generated oxidative stress and acute pulmonary inflammation that is not predicted by E(c) levels, the adverse biological effects of these materials could be explained by their solubility, as demonstrated by ICP-MS analysis. These results demonstrate that it is possible to predict the toxicity of a large series of MOx nanoparticles in the lung premised on semiconductor properties and an integrated in vitro/in vivo hazard ranking model premised on oxidative stress. This establishes a robust platform for modeling of MOx structure-activity relationships based on band gap energy levels and particle dissolution. This predictive toxicological paradigm is also of considerable importance for regulatory decision-making about this important class of engineered nanomaterials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PdO Doping Tunes Band-Gap Energy Levels as Well as Oxidative Stress Responses to a Co3O4p-Type Semiconductor in Cells and the Lung

We demonstrate through PdO doping that creation of heterojunctions on Co3O4 nanoparticles can quantitatively adjust band-gap and Fermi energy levels to study the impact of metal oxide nanoparticle semiconductor properties on cellular redox homeostasis and hazard potential. Flame spray pyrolysis (FSP) was used to synthesize a nanoparticle library in which the gradual increase in the PdO content ...

متن کامل

Influence of Copper Oxide Nanoparticle on Hematology and Plasma Biochemistry of Caspian Trout (Salmo trutta caspius), Following Acute and Chronic Exposure

The Caspian trout is an endangered and quite vulnerable fish, considered for a natural protection program in the southern area of the Caspian Sea. Copper oxide nanoparticles (CuO-NPs) are toxic substances, which induce oxidative stress, not to mention other pathophysiological states. The toxicity of nanoparticles on fish needs more characterization for short- and long-term effects.  Thus, the p...

متن کامل

Influence of Copper Oxide Nanoparticle on Hematology and Plasma Biochemistry of Caspian Trout (Salmo trutta caspius), Following Acute and Chronic Exposure

The Caspian trout is an endangered and quite vulnerable fish, considered for a natural protection program in the southern area of the Caspian Sea. Copper oxide nanoparticles (CuO-NPs) are toxic substances, which induce oxidative stress, not to mention other pathophysiological states. The toxicity of nanoparticles on fish needs more characterization for short- and long-term effects.  Thus, the p...

متن کامل

Cerium oxide nanoparticle modulates hepatic damage, inflammatory and oxidative stress biomarkers in a dose-dependent manner: an in vivo study of rat liver

Objective (s): Cerium oxide nanoparticles nanoceria (CeNPs) is a novel nanoparticle that has great potential for the treatment of various diseases. This study aimed to investigate the effects of CeNPs on oxidative stress biomarkers in the liver of male rats. Materials and Methods: Twenty-four male Wistar rats were equally distributed into 4 groups (n=6/each). The first group was controlled and ...

متن کامل

Ascorbic acid attenuates acute pulmonary oxidative stress and inflammation caused by zinc oxide nanoparticles.

OBJECTIVES It is known that inhalation of zinc oxide nanoparticles (ZnO NPs) induces acute pulmonary dysfunction, including oxidative stress, inflammation, and injury, but there are no reports on how to prevent these adverse effects. We have previously reported that the pulmonary symptoms caused by ZnO NPs were associated with oxidative stress; in the present study, we therefore investigated th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS nano

دوره 6 5  شماره 

صفحات  -

تاریخ انتشار 2012